
The Routes & Rumours Model

Martin Hinsch, Jakub Bijak

October 18, 2021

model version 0.1.0, document version 1.0

Contents

1 Introduction 2

2 Entities 3 base/entities.jl

2.1 Agents . 3
2.2 Cities . 4
2.3 Links . 4

3 Setup 5 base/setup.jl

3.1 Map . 5
3.2 Agents . 5 base/model.jl

4 Processes 6 base/model_agents.jl

4.1 Events . 7 base/processes.jl

5 Information and decisions 9
5.1 Belief Dynamics . 9 Beliefs

5.2 Information Exchange . 10
5.3 Exploration . 11
5.4 Travel Decisions . 11
5.5 Perceived risk . 13

Acknowledgements 13

References 13

A Model parameters 15 base/params.jl

1

1 Introduction

We model the formation of migration routes and how it is affected by the avail-
ability and exchange of information. In our model agents attempt to traverse a -
for them - mostly unknown landscape, having to rely on either local exploration or
communication with other agents to find the best path across.

This document describes the full version of the model, including in particular
risk and resources. Both of these aspects of the model remain unused in some of
the publications that are based on it. Since they can be switched off completely
(using model parameters) only the active parts of the model are documented in
publications outside of this document.

We deliberately restrict this documentation to a technical description of the
working of the model itself. This is very much a qualitative, not a predictive model
(and should not be treated as such). Consequently purpose, parameterisation and
analysis depend to a large degree on the context in which the model is used (Hinsch
& Bijak, in press). For a number of different applications of versions of the model
see Bijak (in press).

Scope

Any documentation of a computational model has to make a trade-off between ac-
curacy and accessibility. A fully accurate and complete document will necessarily
be as complex as the source code it describes and therefore at best only slightly
easier to read.

Documentation therefore has to simplify. This can happen in two ways. One,
by leaving out “obvious” details, that is by not describing technical implementa-
tion details that can be expected to be inferred by a reasonably competent reader.
For example when we write that all cities that are closer than a given distance will
be connected by a link we implicitly assume that the reader understands that this
means that - if they were to replicate the model - they needed to implement a loop
over all combinations of cities, calculate their Euclidean distance, test if that dis-
tance is lower than the given threshold, then, if so, create a new link object, initialise
it accordingly, add the link to both cities, and so on. This does not necessarily mean
that there is only one possible implementation of the mechanism we describe und
the implicit assumption is that any implementation will produce the same result.

The second way to “abbreviate” is to not specify semantic details of the model
itself that we assume will not affect its behaviour. We do for example not specify
which random number generator we are using. Similarly we do not describe for
each calculation the exact steps we are performing and their order. In both cases
different interpretations will lead to different numerical results (due to different
algorithms and different rounding errors, respectively), however, we assume that
these are irrelevant for the behaviour of the model.

Ideally, this documentation should therefore be the minimum of information
that would be required to recreate the model (without having access to the source
code) while producing sufficiently similar results that the same conclusions would

2

be reached as based on the original. In practice, even with best efforts, documen-
tation of software is very rarely fully complete and accurate, ultimately making the
source code the authoritative reference.

This leads us to the other purpose of documenting a model, which is to make
the source code more accessible. Reading and understanding somebody else’s pro-
gram code is generally not easy, but knowing beforehand what the code is sup-
posed to do can help substantially. To reduce the hurdle even further we have at-
tempted to use a notation, layed out in the next section, that makes connections
between description and implementation as obvious as possible.

A note on notation

Most of the time mathematical expressions are more concise and more accessible
to a broader audience than program code. We therefore defaulted to using math-
ematical formulae as a formalism for expressing calculations in the model. On the
other hand, the large number of variables and parameters in the model makes the
mathematical convention to use single letter variable names unviable. Since we
also wanted to make it as easy as possible to find and understand the source code
belonging to a part of the documentation, we therefore attempted to use names
exactly as they occur in the code wherever possible. To further clarify the relation
between the text and the source code we use the following conventions.

Variable, type and function names that are copied verbatim from the source
code are shown in sans serif font in mathematical formulae as well as in the text.
Where the name is also a model parameter we additionally set it inbold face in the
text (a full list of parameters also appears in the Appendix). Names that are used
only in the documentation (for clarity or as abbreviations) are shown in italics in
the text as well as in mathematical expressions, as are helper variables. Important
model concepts are set in the standard font but underlined when mentioned for
the first time or for emphasis. For example, there is a difference if we talk about
the concept of an agent or the type Agent in the program code. Similarly we have
to distinguish between the concept of an obstacle in the simulated landscape and
the model parameter obstacle.

Source files or modules that contain the implementation of a given section are
referenced in margin notes next to the section headings.

2 Entities base/entities.jl

Entities directly represented in the model are agents, cities and transport links.

2.1 Agents

At any time agents are either present at a city or a transport link or they have arrived
at an exit.

3

Agent

loc : Location

link : Link

info_loc : InfoLocation [0..*]

info_link : InfoLink [0..*]

plan : InfoLocation [0..*]

contacts : Agent [0..*]

contacts
social network

0..*

capital : Float

Location

people : Agent [0..*]

links : Link [1..*]

quality : Float

resources : Float

pos : (Float, Float)

Link

l1, l2 : Location

friction : Float

risk : Float

1

2 l1, l2
neighbours

1

loc/link

current location

InfoLocation

links : Link [1..*]

quality : Trusted{Float}

resources : Trusted{Float}

pos : (Float, Float)

InfoLink

l1, l2 : Location

friction : Trusted{Float}

risk : Trusted{Float}

2

l1, l2

neighbours

links
connections 1..*

links
connections

1..*

info_link

known links

0..*
info_loc

known locations

0..*

plan

planned route

0..*

people
agents

currently
present

0..*

travelling
< no yes >

Figure 1: Types of entities in the model and their relationships.

Contacts Each agent has a list of other agents that it stands in contact and can
exchange information with (see Section 5.2).

Knowledge Each agent has a potentially incomplete and inaccurate set of knowledge
items concerning the world. Each item describes the properties and topology (i.e.
connections to other entities) of a city or a transport link.

Plan Agents maintain a list of cities they plan to move to on their way to the exit.

Risk Each agent has properties slope and int that determine slope and intercept,
respectively of its reaction to risk.

2.2 Cities

Cities are located at a specific position on the map and differ in quality and re-
sources. Cities are connected amongst each other by randomly generated trans-
port links (see Section 3). There are a number of designated entry and exit cities at
which agents arrive and leave the world, respectively.

2.3 Links

Links always connect two cities. In the basic version of the model the only prop-
erty of links is friction which represents a combination of distance and difficulty of

4

travel. In the risk version of the model links also have risk associated which is used
to calculate the probability for an agent to die when crossing that link.

3 Setup base/setup.jl

3.1 Map

Before the start of the simulation a map of cities and links is generated and their
property values assigned. To generate the default topology we use a random ge-
ometric graph: n_cities cities are placed at random positions, then cities that are
closer than a given threshold link_thresh are connected with a transport link. In
addition we place a fixed number of n_entry (or n_exit respectively) entry and
exit cities at the respective edge of the map (either at random positions or spaced
out regularly - parameters regular_entries, regular_exits). Entries and exits are
connected with the n_nearest_entry (n_nearest_exit) nearest “regular” cities.
Furthermore, entries (exits) connect to all cities that are closer than entry_dist
(exit_dist) to the entry (exit) edge of the map, but using slow links (see below).

Cities as well as links differ with respect to whether agents can have knowledge
about them before they start their journey. Belonging to either category is deter-
mined by p_unknown_city and p_unknown_link, respectively.

Links

Links come in two types (typ). Links that connect randomly generated cities as well
as those that are generated in a fixed number per entry and exit, respectively, are
fast (i.e. have low friction). Links that are generated to connect entries and exits to
all cities within a certain range of the respective edge of the map are slow (i.e. have
high friction).

The parameterdist_scaledetermines how the length of a link (distance) scales
to friction for both types. Given random valueν∼U[0,frict_range] (parameter frict_range),
the friction of links is calculated as friction= distance ·dist_scale[typ] · (1+ν).

Links’ risk value is set to risk_normal unless they intersect a rectangle whose
coordinates are given by obstacle in which case risk is set to risk_high.

Cities

Cities’ quality and resources are both set to random values out of U[0,1]. The val-
ues of both properties for entries and exits are set by the parameters qual_entry,
res_entry, qual_exit and res_exit.

3.2 Agents base/model.jl

At the beginning of the simulation no agents are present. Agents are created by the
create agents process and added to a randomly selected entry point.

5

Risk

Agent properties int and slope are determined by drawing from bivariate normal
distributions with configurable variance-covariance matrix and mean values:

Σ=

�

risk_sd_i risk_cov_i_s
risk_cov_i_s risk_sd_s

�

µ=

�

risk_i
risk_s

�

int,slope∼N (µ,Σ)

Contacts

The number of initial contacts an agent has is determined as

n =min(#agents/10,n_ini_contacts).

Contacts are picked at random from the entire population (including arrived
agents, but excluding dead ones).

Knowledge

Newly created agents explore their current location with speed speed_expl_stay
and indirect discovery (see Section 5.3). They know exit cities with probability
p_know_target and regular cities/links (out of those that can be known to agents
before setting off, see map creation above) with a probability p_know_city and
p_know_link, respectively. They explore each known city using exploration speed
speed_expl_ini and no indirect discovery. Finally they explore known links if they
already know one of the end points (also with speed speed_expl_init).

4 Processes base/model_agents.jl

The model is implemented as an event-based simulation. That means that updates
to the model state do not happen in discrete time steps but instead as a result of
asynchronous events (see Table 1). All events in the model are assumed to be Pois-
son processes in continuous time (Gillespie, 1976).

With the exception of the creation of new agents all changes of model state are
the result of the actions of agents which are also the only entitites that change state.
Which actions an agent can perform and their rates of occurence depends on its
state, in particular on whether it is currently travelling on a link or staying in a city.
Agents can exchange information with other agents either in their contact list or
present at the same location as they are. They can travel along transport links and
collect information on their current and neighbouring cities.

6

4.1 Events base/processes.jl

Most processes are changes of state in single agents. Whether they can apply is
usually dependent on whether an agent is travelling (= present at a transport link)
or not (=present at a city). It is important to note that every agent in the population
at any time that it fulfills the respective conditions can potentially experience the
event in question.

Table 1: Events, their effects and rates.

event entity condition rate depends on affects
create agent world always constant number of agents
plan agent at city up to date inf. plan
explore agent at city constant information
add contact agent at city #local agents contacts
forget contact agent always #contacts contacts
exchange information agent always #contacts information
depart agent at city constant location
arrive agent travelling friction location
die agent travelling friction number of agents
costs agent at city constant capital

Create agents

Agents are created with rate rate_dep. They enter the world at a randomly selected
departure location. For details see Section 3.

Plan

During planning an agent decides where to go next, depending on its current knowl-
edge. Agents plan with a rate rate_plan if their knowledge about the world has
changed and 0 otherwise. During planning agents decide on where to go next, ei-
ther based on local optimization or on finding the best route to an exit (see section
5.4 for details).

Explore

An exploring agent gains new knowledge about closeby cities and links. Agents
that do not travel explore their current location at a fixed rate rate_explore_stay,
using speed speed_expl_stay and employing indirect discovery (see Section 5.3
for details).

Add contact

An agent adds a new agent that is currently situated in the same city to its list of
contacts. Agents meet new contacts at a rate #other agents ·p_keep_contact if their

7

current number of contacts is below n_contacts_max. A randomly selected agent
from the focal agent’s current location is added to the contact list. If the other agent
has space in its contact list as well the contact becomes mutual. Then both agents
exchange information (see Section 5.2).

Forget contact

Agents lose contacts at a rate of #contacts ·p_drop_contact. Forgotten contacts are
only removed unilaterally, that is the other agents will keep its contact.

Exchange information

An agent communicates with one of its contacts and exchanges information about
the world topology, i.e. the existence and connectedness of cities and links, as well
as their properties. Agents communicate at rate #contacts · p_info_contacts. See
Section 5.2 for details.

Depart from a location

An agent departs from its current location and starts travelling to the next location
in its plan. Departure rate is 1 unless the agents capital is lower than save_thresh
and its expected income is greater than save_income.

On departure an agent leaves its current location and is now located on the link
to the next location. It immediately explores the link with speedspeed_expl_move
(see Section 5.3). It also loses costs_move · friction resources which are substracted
from its capital.

Arrive at a destination

A travelling agent arrives at its destination. Agents arrive at a rate move_rate +
move_speed/friction. Arrived agents change their location to the destination.

Die

Agents travelling on links can die. For a link with arrival rate ra the mortality rate
of agents travelling on that link is ra

risk
1−risk . Therefore the probability for an agent

to die before arrival is just the risk value associated with the link. Deaths can affect
the perceived risk of other agents (see Section 5.5 for details).

Income/costs

When staying at a location agents can lose or gain resources. The change in re-
sources happens at a rate rate_costs_stay and is calculated as

ben_resources · resources− rate_costs_stay

(with resources the resource availability at the current location).

8

5 Information and decisions

Information is a crucial part of the model. Agents have subjective - i.e. potentially
wrong and incomplete - information about the world. They obtain that knowledge
either by exploration or by communicating with other agents. Nearly all decisions
agents make are based on their subjective knowledge.

5.1 Belief Dynamics Beliefs

Each item of knowledge an agent has - for example the quality of a specific city -
is described by a value estimate (called value in the model) and a certainty (trust).
That is, an agent has an idea of the numerical value of a given property and how
certain it is that the value is correct. For a given agent these numbers change ei-
ther when the agent explores its environment or when it exchanges information
with other agents. When collecting information from the environment the esti-
mate becomes more accurate while the certainty increases. Information exchange
is a bit more complicated. Generally speaking the more certain an agent is (i.e. the
higher its certainty value) the stronger the effect on the other agent’s estimate. At
the same time agents with similar beliefs (i.e. similar value estimates) will rein-
force each other and their certainty will increase while for very dissimilar beliefs
certainty can decrease.

In the following we give a general description of the belief dynamics sub-model.
Since some of the expressions are quite long we have - for the sake of readability -
kept to mathematical notation in this case. Names of the corresponding variables
in the source code are given in parentheses.

We based our information model on the well-known mass action dynamics.
To understand the model it is best to imagine that an agent’s belief consists of
two “substances”, certainty and doubt, in proportions t (trust) and d = 1− t , re-
spectively. When two agents interact a “reaction” between their respective belief
components takes place, potentially transforming them (see Table 2). Doubt react-
ing with doubt produces doubt. Certainty of one agent interacting with the other
agent’s doubt can “convince” the latter, changing parts of its doubt into certainty.
Depending on the difference in estimate certainty interacting with certainty can
lead to confusion and increased doubt or just change the estimate.

Table 2: Interactions between certainty and doubt of two communicating agents.

interacting with doubt certainty
doubt doubt -

certainty certainty doubt+certainty

More formally, for an interaction between agents A and B with an estimate v·
(value) we define difference in estimate as

δv :=
|vA − vB |
vA + vB

.

9

Using parameters ci (convince), cu (confuse) and ce (convert) we then calcu-
late the new doubt value d ′A based on the previous values of certainty t· and doubt
d· as

d ′A = dAdB + (1− ci)dA tB + cu tA tBδv .

The estimate vA changes accordingly:

v ′A =
tAdB vA + ci dA tB vB + tA tB (1− cuδv)((1− ce)vA + ce vB)

1−d ′A

As we can see, if different opinions do not lead to doubt, i.e. cu = 0, doubt will
disappear, i.e. d will approach 0 (as long as ci > 0), and the model reverts to a simple
weighted mean [citations for eqv models]:

v ′A = (1− ce)vA + ce vB

Following common programming language convention we will use dot nota-
tion to denote the respective properties of an estimate (e.g. risk.trust). In some
cases we are interested in the “discounted” estimate which we define as

disc(x) := x .value · x .trust.

5.2 Information Exchange

In a single communication event, information about each information item known
by at least one of the participants is exchanged with probability p_transfer_info.
Arrived agents generally do not receive information and do not learn about links
or cities unknown to them, so if one of the participants has already arrived then
items that are unknown to that participant will be skipped. Otherwise information
items with default values are added accordingly (for exchanges that take place) so
that both participants know the item in question prior to the actual exchange of
information.

During the exchange of information, beliefs about all properties of the item in
question (i.e. friction and risk for links and quality and resources for cities) are
exchanged as described in Belief Dynamics. Depending on parameter values, two
additional effects can apply compared to the basic model described earlier:

Errors

Communication can be configured to be noisy. Each agent perceives the value and
the trust component of the communicated property with an added errorε∼U[−δ,δ]
(with δ being error_frict for the friction value, error_risk for the risk value and
error otherwise).

10

Success bias

Agents that have arrived can confer increased authority when communicating their
experience. Agents interacting with an arrived agent use modified values for con-
vince and convert (with parameter weight_arr):

ci = convince
1/weight_arr

co = convert
1/weight_arr

5.3 Exploration

During exploration agents discover new cities and links and refine their knowledge
about those they are already aware of. There are several situations in the model
that let agents explore their environment (see Section 4), the basic mechanics are
identical, however.

Unless mentioned otherwise the properties of newly discovered links and cities
are initialized with “expected” default values risk_exp, res_exp, etc.

Update

When exploring links or cities an agent always improves its estimate of the respec-
tive entities’ properties. An agent’s belief is updated by calculating the new value
v ′ and trust t ′ as simple weighted means using a learning speed s (which can differ
dependent on situation) and target or true value vt (the target value for trust is 1):

v ′ = v (1− s) + vt s

t ′ = t (1− s) + s

Indirect discovery

When exploring a city with indirect discovery enabled then it finds and immedi-
ately explores links connected to that city with a probability p_find_links. Neigh-
bouring cities connected through these links are always discovered (i.e. known and
properties set to default values) and with a probability p_find_dest also explored
(with half learning speed and no indirect discovery enabled).

5.4 Travel Decisions

Agents start out at entry cities at one edge of the map and attempt to reach exit
cities at the other edge. Agents decide if and where to go purely based on the sub-
jective information they have available. Travel decisions are made in one of two
ways. If an agent has enough topological information to be able to find a fully
connected route from its current city to an exit, it will plan a path and follow it.
Otherwise it will select a destination among all immediately accessible cities.

11

Properties affecting the decisions

In both cases the decision is affected by a number of properties of the cities and
links involved.

attractiveness The attractiveness of a location is calculated as a weighted sum of
its quality and the amount of resources it provides (parameter qual_weight_res):

a = disc(quality) · (1−qual_weight_res) +disc(resources) ·qual_weight_res

effective friction As trust in an agents’s estimate of friction decreases the effective
value of friction, on which decisions are based increases:

feff = frict.value+ frict.value · (1− frict.trust).

perceived safety Risk is perceived and communicated in the same way as other
properties of cities and links. However, the way risk influences decisions is not as
straightforward, as we used the results of an empirical study to calibrate the effects
of perceived risk on travel decisions. First we derive the agent’s perceived proba-
bility to be safe from the raw risk risk.value:

ps = risk.trust · (1− risk.value)risk_scale

Here, risk_scale is a parameter that determines how objective risk of dying
scales to a general subjective perception to be safe. As with other subjective prop-
erties the safety estimate is discounted by the trust an agent has in the quality of
the estimate.

Using agent-specific parameters int and slope (see Section 3.2) we can then cal-
culate a safety score s (strictly speaking the probability for an agent to decide in
favour of a potentially unsafe action):

s =
e int+100ps slope

1+ e int+100ps slope

Local travel

If agents are not able to find a route to an exit they will pick a destination at random
from all immediately reachable cities (i.e. the current location and all its known
neighbours). The probability to pick a location i , pi is its relative suitability modi-
fied byqual_bias: pi = (li /

∑

l)qual_bias. Suitability of a location j , reachable by link
i depends on proximity to the exit x, attractiveness a and the difficulty of reach-
ing it due to friction and risk (both of which are assumed to be 0 for the current
location):

l j = (qual_weight_x ·x j +a j)
qual_tol_frict

qual_tol_frict+ feff,i
si

12

Path planning

If an agent knows enough to find a complete route it will attempt to travel the route
with the lowest costs. The cost of a route is simply the sum of the costs of all its seg-
ments which again are a function of travel effort and properties of the waypoints.
Specifically, the costs of a segment consisting of a link i leading to a city j are cal-
culated from effective friction feff and safety score s of the link (see above), and
(quality dependent) cost of the destination as

ei = feff,i eq , j +path_penalty_risk · (1− si).

The cost of a waypoint then decreases with increasing attractiveness:

eq , j =
1+path_penalty_loc

1+path_penalty_loc ·a j

5.5 Perceived risk

Travel in the model can be risky and agents can perceive and react to that risk. Risk
is perceived and communicated by agents in the same way as other properties of
the world. In addition, however, perceived risk can be directly affected by deaths
either of contacts or by nearby agents. Every death has a chance of being noticed
by contacts of the dead agent as well as agents travelling on the same link with
probabilities p_notice_death_c and p_notice_death_o, respectively. If an agent
noticing a death knows the link it has occured on, it adjusts its risk estimate for that
link towards 1 with learning speeds speed_risk_obs and speed_risk_indir (for di-
rect observation and contacts, respectively), following the same rules as knowledge
updates during exploration (see Section 5.3).

For the effects of risk on decision making see Section 5.4.

Acknowledgements

This work was funded by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant no. 725232)
for 2017-2022, and executed by the University of Southampton, with the University
of Rostock.

References

Bijak, J. (in press). Towards Bayesian Model-Based Demography: Agency, Complex-
ity and Uncertainty in Migration Studies (Vol. 17). Dordrecht: Springer.

Gillespie, D. T. (1976, December). A general method for numerically simulating
the stochastic time evolution of coupled chemical reactions. Journal of Com-
putational Physics, 22(4), 403–434. doi: 10.1016/0021-9991(76)90041-3

13

Hinsch, M., & Bijak, J. (in press). Principles and State of the Art of Agent-Based Mi-
gration Modelling. In Towards Bayesian Model-Based Demography: Agency,
Complexity and Uncertainty in Migration Studies. Dordrecht: Springer.

14

A Model parameters base/params.jl

World setup

parameter range explanation
n_cities [1,∞[number of (regular) cities
link_thresh]0.0, 1.0[maximum distance to connect two cities
n_exits [1,∞[number of exit cities
regular_exits {true, false} whether to space exits out regularly
n_entries [1,∞[number of entry cities
regular_entries {true, false} whether to space entries out regularly
exit_dist [0.0, 1.0] minimum distance to entry to connect city to all

exist
entry_dist [0.0, 1.0] maximum distance to entry to connect city to all

entries
n_nearest_entry [0,∞[number of nearest cities to connect each entry to
n_nearest_exit [0,∞[number of nearest cities to connect each exit to
qual_entry [0.0, 1.0] quality of entry cities
res_entry [0.0, 1.0] resources of entry cities
qual_exit [0.0, 1.0] quality of exit cities
res_exit [0.0, 1.0] resources of exit cities
obstacle [0.0, 1.0]4 position of obstacle rectangle (x1, y1, x2, y2)
dist_scale [1.0,∞[2 scale between distance and friction (fast, slow)
frict_range [0.0,∞[maximum stochastic increase of friction
risk_normal [0.0, 1.0] risk on normal links
risk_high [0.0, 1.0] risk on obstacle links
p_unkown_city [0.0, 1.0] probability for a city to be unknown to all

starting agents
p_unknown_link [0.0, 1.0] probability for a link to be unknown to all

starting agents

Agent setup

parameter range explanation
n_ini_contacts [0,∞[number of initial contacts
ini_capital [0.0,∞[amount of initial capital
p_know_target [0.0, 1.0] probability for a starting agent to already know a

given exit
p_know_city [0.0, 1.0] probability for a starting agent to already know a

given city
p_know_link [0.0, 1.0] probability for a starting agent to already know a

given link
speed_expl_ini [0.0, 1.0] learning speed during initial setup

15

Process rates

parameter range explanation
rate_dep [0.0,∞[rate at which new agents are created
rate_costs_stay [0.0,∞[rate at which agents accrue costs while not

travelling
rate_explore_stay [0.0,∞[rate at which agents explore while not travelling
move_rate [0.0,∞[base rate at which agents cross links
move_speed [0.0,∞[movement speed while crossing links
p_keep_contact [0.0,∞[rate (per co-located agent) at which agents

acquire new contacts
p_drop_contact [0.0,∞[rate (per contact) at which agents lose contacts
p_info_contacts [0.0,∞[rate (per contact) at which agents initiate

communication
rate_plan [0.0,∞[rate at which agents revise their planned route

Exploration

parameter range explanation
res_exp [0.0, 1.0] expected value of resources for newly discovered

cities
qual_exp [0.0, 1.0] expected value of quality for newly discovered

cities
frict_exp [1.0,∞[2 expected value of friction for newly discovered

links
risk_exp [0.0, 1.0] expected value of risk for newly discovered links
p_find_links [0.0, 1.0] probability to find links connected to newly

explored cities
p_find_dests [0.0, 1.0] probability to explore cities on the other side of

found links
speed_expl_stay [0.0, 1.0] learning speed while not travelling
speed_expl_move [0.0, 1.0] learning speed while travelling
p_notice_death_c [0.0, 1.0] probability contacts become aware of an agent’s

death
p_notice_death_o [0.0, 1.0] probability co-located agents become aware of

an agent’s death
speed_risk_indir [0.0, 1.0] speed of learning a link’s risk from death of

contact
speed_risk_obs [0.0, 1.0] speed of learning a link’s risk from observed

death
speed_expl_risk [0.0, 1.0] learning speed for risk

Resources

parameter range explanation
costs_stay [0.0,∞[resource costs while staying
ben_resources [0.0,∞[effect of a city’s resources on income
costs_move [0.0,∞[resource costs while moving
save_thresh [0.0,∞[minimum capital an agent needs to travel

16

save_income [0.0,∞[minimum income an agent needs to stop
travelling

Decisions

parameter range explanation
qual_weight_x [0.0,∞[effect of geographical location on (local)

attractiveness of a city
qual_weight_res [0.0, 1.0] weight of resources relative to quality for

attractiveness of a city
qual_tol_frict [0.0,∞[insensitivity of (local) attractiveness of a city

against friction
qual_bias [0.0,∞[bias towards higher (local) attractiveness
path_penalty_loc [0.0,∞[reduction in path costs by city attractiveness
path_penalty_risk [0.0,∞[effect of risk on path costs
risk_scale [0.0,∞[how real probability to survive scales to

perceived safety
risk_i]−∞,∞[intercept of map from perceived safety to

decision
risk_s]−∞,∞[slope of map from perceived safety to decision
risk_sd_i [0.0,∞[standard deviation of intercept
risk_sd_s [0.0,∞[standard deviation of slope
risk_cov_i_s]−∞,∞[covariance between intercept and slope

Information exchange

parameter range explanation
n_contacts_max [0,∞[maximum number of contacts an agent can have
p_transfer_info [0.0, 1.0] probability for an information item to be

exchanged during communication
convince [0.0, 1.0] effect of certainty on doubt, resulting in certainty
convert [0.0, 1.0] effect of certainty on certainty, resulting in

certainty
confuse [0.0, 1.0] effect of certainty on certainty, resulting in doubt
error [0.0, 1.0] communication error
error_risk [0.0, 1.0] communication error for risk
error_frict [0.0, 1.0] communication error for friction
weight_arr]0,∞[weight of opinion of arrived agents during

communication

17

	Introduction
	Entities-base/entities.jl
	Agents
	Cities
	Links

	Setup-base/setup.jl
	Map
	Agents-base/model.jl

	Processes-base/model_agents.jl
	Events-base/processes.jl

	Information and decisions
	Belief Dynamics-Beliefs
	Information Exchange
	Exploration
	Travel Decisions
	Perceived risk

	Acknowledgements
	References
	Model parameters-base/params.jl

